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Abstract

For almost 40 years, top income inequality has increased sharply in the US. At the

same time, there have been major improvements in automation technology. It is well-known

that the distribution of top income is well approximated by a Pareto distribution. In this

paper, we provide a theory that links automation technology to the Pareto tail of the income

distribution. We construct a model in which managing labor is more difficult than managing

capital. We model this as a convex cost of labor, resulting in decreasing returns to scale

production function. An improvement in automation enables entrepreneurs to substitute

labor with capital and decreases the severity of diseconomies of scale. This leads to higher

returns on entrepreneurial skills, a decrease in the Pareto parameter of income distribution,

and an increase in top income inequality. We microfound the convex cost of labor using a

theory of efficiency wages. Using cross-industry and cross-country data, we provide evidence

that there is a significant correlation between automation and top income inequality.
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Villalvazo Martin, Mustafa Doğan, Gabrielle Vasey and participants of the UPenn Macro Lunch Seminar, Midwest
Macro Meeting Spring 2019, NASMES 2019, GCER 2019, GW Student Research Conference 2019. This research
did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.



1 Introduction

Over the past four decades, income inequality among the highest earners in the United States has

witnessed a significant rise. This inequality is measured by the ratio of the income share belonging

to the top 0.1% to that of the top 1%, highlighting the widening income gap between the super-

rich and the rich. Notably, this period coincided with substantial technological advancements,

particularly in the field of automation. In this paper, we present a theory that establishes a

connection between the level of automation and top income inequality.

The left panel of Figure 1 illustrates the relative income shares within the top income

distribution. The solid line depicts the ratio of the income share of the top 0.01% to that of the

top 0.1%, while the dotted line represents the ratio of the income share of the top 0.1% to the top

1%. Furthermore, the dashed line showcases the ratio of the income share of the top 1% to the

top 10%. The figure reveals a clear upward trend in top income inequality since the 1980s. This

trend holds true regardless of whether we define the top income as the top 10%, top 1%, or top

0.1%. As demonstrated in Figure 1, top income inequality has increased by nearly half over the

course of the past four decades.

It is well-known that the top income distribution of income is well approximated by a Pareto

distribution.1 An important implication of the Pareto distribution is that the relative income share

is determined by the Pareto (shape) parameter. The observed increase in top income inequality

suggests that the Pareto parameter associated with the top income distribution has been decreasing

over time.

Our model establishes a link between the Pareto parameter and automation technology.

Specifically, we adopt a task-based production function similar to the one employed by Acemoglu

& Restrepo (2018b). This production function implies that the labor share of income is a function

of the level of automation, which holds true in our model as well. Acemoglu & Restrepo (2021)

1The CDF of a Pareto distribution with scale parameter c and shape parameter (Pareto parameter) λ is given
by F (x) = 1− (c/x)λ.
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Figure 1: Top Income Inequality and Labor Share
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Note: Left panel: The solid line shows the ratio of the income share of the top 0.01% to the top 0.1%. The dotted
line shows the ratio of the income share of the top 0.1% to the top 1%. The dashed line shows the ratio of the
income share of the top 1% to the top 10%. Right panel: The solid line shows the Pareto parameter implied by the
relative income share of top 0.1% to top 1%. The dashed line is the labor share of income (right axis).
Source: Relative income shares: World Inequality Database; Labor share: Penn World Table 9.1.

and Moll et al. (2021) use this result to estimate the impact of automation on economic inequality

using labor share as a proxy. Consequently, we depict the relationship between the labor share

and the Pareto parameter in the right panel of Figure 1. The figure reveals a strong correlation

between automation and top income inequality.

In our interpretation, automation encompasses a broad range of technologies that replace

labor. This definition encompasses computers, software (or information technology, IT, in general),

as well as industrial robots. As depicted in the figure, top income inequality began to increase

in the late 1970s, coinciding with the dawn of the IT revolution. This observation supports the

notion that the rise in top income inequality can be attributed to the advent of labor-replacing

technologies.

There are well-established theories explaining why the right tail of the income distribution

is approximated by a Pareto distribution. We build our theory on the span of control argument

proposed by Lucas (1978) and Rosen (1981). In these models, top income inequality depends on

the severity of diseconomies of scale. As the severity of diseconomies of scale decreases, top-skilled

entrepreneurs scale up their production and increase their market share. Hence, inequality at
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the top percentile rises. However, in these models, the decreasing returns to scale parameter is

exogenously given. In contrast, in this paper, we endogenize this parameter and show how it

changes with automation. We incorporate the span of control problem of entrepreneurs to the

task-based framework of automation decision, as modeled by Acemoglu & Restrepo (2018b).

The model is based on the assumption that labor is the main reason for diseconomies

of scale. We assume that managing labor is more difficult than managing capital, and replacing

labor with capital enables entrepreneurs to scale up their production. Improvement in automation

technology helps entrepreneurs to replace labor with capital and, hence, reduces the severity of

diseconomies of scale. One reason for the cost of managing labor might be moral hazard. If

entrepreneurs do not know whether their employees are working or shirking, then entrepreneurs

need to spend additional resources to provide an incentive for their workers to exert effort, such as

investing in monitoring technology or paying efficiency wages. If the cost of additional resources

is convexly increasing with the number of workers, then the profit function exhibits decreasing

returns to scale. In the main text, we provide the result for any convex cost function in labor. In

the appendix, we show that an efficiency wage theory provides a microfoundation for this convex

cost.

The idea that technological innovation allows firms to scale up their production is not

new; it goes back to Rosen (1981). However, the main models of technological progress have no

implications for a change in scalability. Technological improvement is usually modeled as either

an increase in the productivity of some factor (for example, Acemoglu (2002)), a change in capital

share (for example Acemoglu & Restrepo (2018b)), or a decrease in the price of capital (for

example, Autor & Dorn (2013)). Because none of these affect the decreasing returns to scale of

the production function, they do not impact the tail of income distribution.

We define the level of automation as the share of tasks that can be produced by capital,

as in Acemoglu & Restrepo (2018b). An entrepreneur needs to complete a set of tasks (such

as designing, engineering, accounting, etc.) to produce the final good. While some of these

tasks can be automated (i.e., they can be produced by capital), some can only be produced by
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labor. As automation technology improves, dependency on labor decreases, and the convexity

of production cost decreases. Therefore, the scalability problem is associated with the level of

automation technology. Our main result links the Pareto parameter of the right tail of the income

distribution to the skill distribution in the population, automation technology, and the severity of

the convexity of the monitoring cost. We show that as automation technology improves, inequality

at the top rises.

To understand the mechanism, consider the extreme case when none of the tasks can be

automated. Then, the cost of production is the price of labor plus the monitoring cost, which

is convex. Therefore, the top-skilled entrepreneur can only serve a portion of the market, which

enables lower-skilled entrepreneurs to enter the market. Now, consider the other extreme case

when any task can be automated. Now, the only cost of production is the price of capital, which is

linear. Therefore, an entrepreneur has no problem scaling up his output, and, hence, the top-skilled

individual captures the entire market. While in the first scenario, there is lower inequality due to

the presence of other entrepreneurs, in the second scenario there is perfect inequality because the

top talented entrepreneur controls the entire market. When the economy shifts from one extreme

to the other, thanks to automation, income inequality at the top increases.

The main result of our model is consistent with the data. One important feature of the task-

based framework is that it endogenizes factor shares of income. Acemoglu & Restrepo (2018b) and

Martinez (2021) show that the labor share of income is a function of the automation level. This is

also true in our model. Our model predicts that the Pareto parameter is proportional to the share

of non-automated tasks, which is equal to the labor share of income. We test this relationship

using two different datasets. First, we examine the cross-industry cross-time variation of the labor

share and the Pareto parameter in the US. Second, we study the cross-country, cross-industry

variation in OECD countries. Our regression results confirm the model’s prediction.

Even though our focus is an entrepreneurial income, an alternative interpretation of the

profit in the model is CEO compensation. In other words, if entrepreneurs in the model are CEOs

of large corporations, our model predicts that the Pareto parameter of CEO compensations should
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be lower in industries with lower capital share. We test this result using CEO compensation data

from the Compustat Execucomp dataset and find that there is a positive relationship between the

Pareto tail and the labor share. Furthermore, using firm-CEO level data, we show that there is a

positive relationship between the capital intensity of the firm and CEO compensation.

Our model is static and automation technology is exogenously given. We show the impact

of an exogenous change in automation technology. Although the model is static, the main result

extends to a dynamic model without any friction in which the only dynamic choice is capital

accumulation. In such a model, the entrepreneur’s problem is static. Furthermore, because the

main result of the static model does not depend on the prices, it is true in this dynamic version

of the model.

Related Literature: This paper is related to several strands in the literature. First, we

contribute to the literature on the impact of automation on labor market outcomes (Acemoglu &

Restrepo, 2020; Autor & Dorn, 2013; Goos et al., 2014; Hémous & Olsen, 2018; Moll et al., 2021).

This literature mainly focuses on wage inequality between high and low-skill workers. Martinez

(2021) also considers the impact of automation on the span of control; however, the main focus

of his paper is the decline in the labor share, which does not drive the right tail of the income

distribution. In this paper, in contrast, we focus on the impact of automation on the Pareto

parameter of the top income distribution.

The study most closely related to ours is that undertaken by Moll et al. (2021), who examine

the impact of automation on income and wealth distribution. In their model, automation gives rise

to higher returns to wealth, and, hence, it increases the incentive to accumulate wealth. Because of

the birth and death process, some individuals are lucky enough to live long enough to accumulate

wealth exponentially and end up in the top percentile of income and wealth distribution. As in

our paper, the thickness of the income distribution is a function of the automation level. Yet we

identify a different mechanism. Here, we focus on the increase in entrepreneurial income, which

is an important part of the increase in top income inequality (Guvenen & Kaplan, 2017; Smith

et al., 2019). In our model, automation impacts top income inequality through the increase in
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return to entrepreneurial skills. Smith et al. (2019) show that entrepreneurs are crucial fraction of

top income earners and their skill is an integral part of their firm’s performance. Thus, we believe

that to understand the dynamics of top income inequality it is important to first understand the

change in the return to entrepreneurial skills.

Second, a growing literature examines the determinants of top income inequality and the

change in top income inequality. Gabaix & Landier (2008) and Tervio (2008) use assignment

models to explore the connection between changes in firm size distribution and increases in CEO

compensation. However, the Pareto parameter in those models is constant, whereas we are inter-

ested in the change in the Pareto parameter. Several other articles study the impact of the decline

in the top marginal tax rate on the share of the top income percentile (Piketty et al., 2014; Kim,

2015; Aoki & Nirei, 2017). Aghion et al. (2018) and Jones & Kim (2018) show that innovation

and creative destruction are important factors for top income inequality. Geerolf (2017) shows

that the knowledge-based hierarchies model of Garicano (2000) and Garicano & Rossi-Hansberg

(2006) generates a Pareto tail at the top of income distribution and that the Pareto parameter is

inversely related to the number of layers. However, Rajan & Wulf (2006) provide evidence that

the number of layers in corporations in the US has decreased over time.

The third strand of the literature this paper contributes to considers the impact of changes

in factors’ share of income on inequality. Piketty (2014) argues that capital income is more

concentrated than labor, and, hence, that an increase in capital income share leads to higher

inequality. Bengtsson & Waldenström (2018) show that there is a positive relationship between

the capital share in national income and the income share of the top 1%. In our model, the

increase in the capital income share leads to an increase in top income inequality. However, this

is so not because top income owners are the owners of capital; instead, automation increases the

return to entrepreneurial skill. Indeed, since the 1960s, the share of business income inside the

top 0.1% has almost doubled (Piketty & Saez, 2003).

In a related paper, Dogan & Yildirim (2017) study the impact of automation on compensa-

tion schemes of workers. In their model, replacing labor with capital leads to a reduction in peer
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monitoring; hence, firms change the compensation scheme to incentivize workers to exert effort.

In this paper, we, too, consider the monitoring problem of workers. However, our main focus is

on top income inequality.

The structure of the remaining paper is as follows: Section 2 presents the reduced form

model and the main results. Section 3 provides motivating facts, and section 4 concludes.

2 The Model

We consider a static model economy. To understand the impact of improvement in automation

technology, we characterize top income distribution and consider the comparative statistic with

respect to the automation level.

There is a unit mass of individuals, each endowed with two types of skill: labor and

entrepreneurial. The labor skill is the same for all individuals, whereas the entrepreneurial

skill, denoted by z, is distributed with some cumulative distribution function G with support

[zmin, zmax] ⊂ R+. There is a fixed amount of capital stock in the economy, owned by individuals.

Each individual can either become a worker or an entrepreneur. If an individual becomes

a worker, she supplies labor inelastically and earns wage w. If she becomes an entrepreneur,

she rents capital and hires labor in order to produce output and enjoy a profit, π(z), which is

determined in equilibrium. Individuals choose their occupations to maximize their income.

2.1 The Entrepreneur’s Problem

Each entrepreneur has access to production technology. We use a task-based framework similar

to that of Zeira (1998) and Acemoglu & Restrepo (2018b). To produce a unique final good, an

entrepreneur needs to complete a measure one of the tasks, i ∈ [0, 1]. There is no market for tasks,
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and so the entrepreneur needs to complete all of the tasks inside the firm.2

Tasks are complements and they are aggregated into output by a unit elastic aggregator

(i.e., Cobb-Douglas). The log of the production function is given by:

lnY =

1∫
0

lny(i)di, (1)

where y(i) is the level of task i used in the production. For a given entrepreneurial skill z, the

total output is zY .

Given a task i, capital and labor are perfect substitutes. However, there is a technological

constraint on the usage of capital. Some of the tasks are not technologically automated, meaning

that they cannot be produced by capital. There is an automation technology frontier I such that

task i ≤ I can be produced either by capital or by labor, while task i > I can be produced only

by labor. Formally, the production function for task i is:

y(i) =

ki + γi`i if i ≤ I,

γi`i if i > I,

(2)

where ki and `i denote capital and labor, and γi is the productivity of labor in task i. We assume

that γi is increasing in i.3 In other words, i denotes the complexity of the task, and labor has a

comparative advantage relative to capital in high-index tasks.

Because capital and labor are perfect substitutes, only one of them is going to be used to

produce a task. In a sense, automation is labor-replacing technology. Once a task is automated,

capital might replace labor for that task. Because γi is increasing, it is optimal to automate (i.e.,

produce by using capital) the low-index tasks first. In other words, if it is optimal to automate

task i, then it is optimal to automate task j < i. Let I? ≤ I be the automation decision of the

2Assume that transportation cost is high enough so that no one wants to trade tasks.
3For the sake of simplicity, we assume that capital has the same productivity for each task, which is normalized

to 1. However, as long as the ratio of labor productivity to capital productivity is increasing the following analysis
holds.
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entrepreneur, so that any i < I? is automated.4 Then, by combining (1) and (2), the log of the

production function is:

lnY =

I?∫
0

lnksds+

1∫
I?

ln (γi`i) di. (3)

Apart from the technological constraint, there is another difference between labor and

capital: the entrepreneur has limited ability to manage labor. As the employment size increases,

the entrepreneur losses control over labor. The usage of capital does not affect the span of control

of the entrepreneur; only the measure of labor affects it. We represent the loss of control as a

cost paid by the entrepreneur, who, to sustain control, needs to spend additional resources. Let

v(
1∫
I?
`idi) denote this cost and assume that it is strictly increasing and convex: v′ > 0, v′′ > 0.

Moreover, we assume that v(0) = 0 and v′(0) = 0. We discuss the interpretation of this additional

cost in the next sub-section.

The entrepreneur’s objective is to maximize profit. she decides which tasks are to be

automated, I?; how much capital to rent for each automated task, ks for s < I?; and how much

labor to hire for tasks that are not automated, `i for i ≥ I?. Formally, the entrepreneur’s problem

is:

π(z) = max
I?,{`i}i∈[I?,1],
{ks}s∈[0,I?)

zY − w
1∫

I?

`idi− v

 1∫
I?

`idi

−R I?∫
0

ksds (4)

s.t. 0 ≤ I? ≤ I,

`i ≥ 0, ks ≥ 0,

and the production is subject to (3), where w is the wage rate and R is the rental rate of capital.

4We assume that the least productive tasks can be automated. However, Autor & Dorn (2013) argue that
middle-skilled jobs are more prone to automation. For the more general cases, suppose M is the set of tasks that
can be automated. For the main result of this paper, the only important parameter is the measure of tasks that
cannot be automated, 1 − |M |. For ease of interpretation and mathematical computation, we assume the set of
automated tasks is connected, M = [Imin, I). For simplicity, let Imin = 0 because it is always optimal to start
automating the least productive task.
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Our main mechanism works through the convex cost of labor, v. This additional convex

cost leads to a decreasing returns to scale profit function. Because the production function, zY ,

is constant returns to scale and v is convex, zY − v is decreasing returns to scale. If every task

is automated, I? = 1, then the production function is constant returns to scale. If there is no

automation technology, I? = 0, then the model is similar to the span-of-control model of Lucas

(1978). Hence, the level of automation determines the severity of the diseconomies of scale.

2.1.1 Interpretation of v

The main mechanism of this paper relies on the concept of convex cost represented by v, which

captures the diminishing control over labor as employment size increases. The interpretation of v

varies and offers insights into different aspects of labor costs.

One interpretation of v relates to monitoring costs. In order to mitigate issues such as

shirking, entrepreneurs incur additional expenses to monitor their workers, as described in the

efficiency wage theory (Shapiro & Stiglitz, 1984; Calvo, 1985). If the probability of effective

monitoring decreases as the labor force expands, it leads to a convex cost associated with labor.

Notably, capital does not face shirking concerns, hence the monitoring cost is unaffected by the

size of capital. As a result, v depends solely on the labor force.

Another interpretation of v is related to convex hiring and firing costs (Hopenhayn, 1992).

Given the absence of frictions in the capital market, the cost of capital is determined solely by its

price. In contrast, labor encounters convex costs due to the complexities involved in the hiring

and firing processes. Additionally, v can be understood as the problem-solving cost borne by the

entrepreneur (Garicano, 2000). With the introduction of automation, tasks become more well-

defined, and capital gains the ability to independently resolve these problems. However, labor still

encounters challenges that workers are unable to solve independently. To address these issues,

workers seek the advice and assistance of the entrepreneur, resulting in a cost in terms of the

entrepreneur’s time and effort.
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It is worth noting that the typical employment size of top entrepreneurs is approximately

100 Smith et al. (2019), which may imply that issues related to span-of-control do not pose a

significant problem for them. However, we posit that the lack of substantial scaling in their

businesses, despite their success, is indicative of underlying frictions. Given their success and

wealth, financial constraints are unlikely to be the primary barrier. Instead, we argue that the

absence of scaling can be attributed to challenges related to span-of-control. Consequently, a

reduction in this problem through automation emerges as a significant factor influencing top

income inequality.

One piece of evidence supporting the idea of convex labor costs is the significant interest

entrepreneurs show in seeking advice on employee relations, particularly among large firms. Ac-

cording to the “Business Advice and Planning” module of the Annual Survey of Entrepreneurs

conducted by the Census in 2016, more than a quarter of entrepreneurs who sought guidance

sought advice specifically on employee relations (U.S. Census Bureau, 2016). In contrast, only

20% sought advice on business finances, and merely 9% sought guidance on investment and ac-

cess to capital. Notably, it is primarily entrepreneurs running large firms who seek advice on

employee relations. On average, the employment size of these entrepreneurs’ firms is 65% larger

than those seeking any type of advice, while their revenue figures are twice as high. On the other

hand, there is no difference between the average firm size of entrepreneurs who seek advice on

business finances and those seeking any type of advice. These findings emphasize the significance

of employee relations for owners of large firms.

Another evidence of the convex cost of labor is the firm-size-wage-premium. Large firms

pay higher wages than smaller firms, even after controlling for worker heterogeneity (Oi & Idson,

1999). If the wage rate depends on the employment size, then firms face a convex cost in labor5.

5Labor market power can be seen as an alternative explanation for the rising wage schedules observed. We
acknowledge that this simple model may not be sufficient for analyzing the impact of labor market power on
inequality. To comprehensively address labor market power, additional structural considerations need to be incor-
porated. For instance, the fate of workers who become unemployed due to wage cuts should be specified. This
assumption would outline the strategic interaction between firms, resulting in a more complex model. The current
model can be interpreted as a model with a high degree of labor market power. Under the assumptions that: i)
the labor market is segmented by regions and industries, ii) workers cannot move across regions and industries,
iii) each region-industry combination has only one entrepreneur and iv) occupational choice is absent, the model’s
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Lemma 1. If wage rate w(L) is strictly increasing in L and positive, then w(L)L is strictly convex.

In this paper, we interpret v as the monitoring cost. In appendix B, we provide a micro

foundation for v using the efficiency wage theory, which leads to the firm size wage premium.

Because the use of the efficiency wage as a micro foundation provides no additional insight, to

make the model more tractable, we focus on the reduced form model6.

The largest firms in the United States are not typically owned by entrepreneurs, as stated by

(Smith et al., 2019). According to their research, businesses owned by the top 0.1% of individuals

are generally regional enterprises with approximately $20 million in sales, while C corporations

with profits exceeding $250 million primarily dominate the market. To account for this observation,

one can incorporate another sector into the model. This additional sector would consist of large

public firms operating under a constant returns to scale production function. Importantly, the

primary findings of this paper remain valid even when considering this extended model.

2.2 The Equilibrium

Now, we are in a position to define an equilibrium.

Definition 1. For a given automation technology I, skill distribution G with support [zmin, zmax]

and capital stock K̄, an equilibrium consists of prices {R,w}, the set of entrepreneurs E ⊂

[zmin, zmax], automation technology I?(z), and labor and capital demand {`?i (z)}i∈[I?,1], {k?s(z)}s∈[0,I?)

for z ∈ E such that:

• π(z) ≥ w for all z ∈ E;

• {`?i (z)}i∈[I?,1], {k?s(z)}s∈[0,I?), I
?(z) solves the entrepreneur’s problem (4);

results are valid. An increase in labor market power can be interpreted as an increase in the convexity of v.
6What happens to v depends on the interpretation: it can be a part of the compensation scheme for labor, or

it can be an effort cost incurred by the entrepreneur. In the reduced-form model, we assume v is incurred by the
entrepreneur; in the model, with efficiency wage, v/L is paid to labor as compensation for not shirking. However,
our result does not depend on what happens to v.
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• Labor market clears:

∫
E

1∫
I?(z)

`?i (z)didG(z) = 1− |E|;

• Capital market clears:

∫
E

I?(z)∫
0

k?s(z)dsdG(z) = K̄.

Proposition 1. For a given automation technology 0 < I < 1, capital stock K̄, and skill distribu-

tion G with support [zmin, zmax] ⊂ R+, there exists a unique equilibrium.

All proofs are documented in the appendix.

2.3 Characterization of the Equilibrium

The details of the characterization of the equilibrium are provided in the appendix. Here we point

out the main features.

2.3.1 Optimal Occupational Choice

As usual in this type of model, there is a cutoff productivity level that determines the optimal

occupation. It is easy to see that profit π(z) is increasing in z, and, hence, there is a cutoff z?

such that any individual with z > z? becomes an entrepreneur, and others become workers.

2.3.2 Optimal Allocation of Capital and Labor of an Entrepreneur

An entrepreneur uses the same measure of labor in non-automated tasks and the same measure

of capital in automated tasks. To see this, consider the first-order conditions of (4) with respect
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to `i and ks:

[`i] :
zY

`i
= w + v′

(∫ 1

I?
`idi

)
=⇒ `i = `j = ` ∀i, j ≥ I?. (5a)

[ks] :
zY

ks
= R =⇒ ks = kt = k ∀s, t < I?. (5b)

The first condition equates the marginal product of labor in task i to the marginal cost of

labor. Since marginal cost is the same for each task that is not automated, marginal products must

be equalized across tasks. Hence, this condition implies that the measure of labor used in each task

that is not automated is the same. Similarly, the second condition implies that the capital used for

each task that is automated is the same. For automated tasks, this is easy to see. Because there

is no productivity difference between the tasks, an entrepreneur should be indifferent to allocating

resources to each task; therefore, she distributes the capital across tasks uniformly. This is also

true for labor because of the unit elasticity of substitution between tasks. Unit elasticity leads to

the productivity of labor being in multiplicative form. Once the automation level is fixed, labor

productivity behaves as if it is total factor productivity. Formally, effective TFP becomes zC(I?),

where C(I?) = exp

(
1∫
I?
lnγidi

)
. Hence, the productivity level of a task affects each task in the

same way, and optimal labor is the same across non-automated tasks.

The optimal solution to the entrepreneur’s problem induces the output to the Cobb-Douglas

looking function: zC(I?)kI
?
`1−I? .

2.3.3 Optimal Automation Level of Entrepreneur

Now we characterize the optimal automation level of an entrepreneur. Taking the first order

condition of 4 with respect to I?, and imposing the optimality condition for labor and capital,

leads to the following equation:

1∫
I?

lnγidi− (1− I?)lnγI? + ln(z) = ln(R). (6)
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The solution to this equation is the unconstrained optimal automation level, I?. En-

trepreneurs choose I? if it is less than the automation constraint I; otherwise, they choose I. Let

Ĩ(z) be the solution to (6).

Note that for low-productive tasks, using labor might never be optimal. Consider a low

productive task i such that w/γi > R. Even without any labor, the effective cost of labor is higher

than the capital. Therefore, the entrepreneur does not have any incentive not to automate this

task. So, all tasks i < I
¯

:= max{0, γ−1(w/R)} are automated in the equilibrium, where γ−1(x) is

the task that has the labor productivity x.

Proposition 2. The optimal choice of automation level, I?(z) is increasing in z and given by:

I?(z) =


I if z ≥ z̃,

Ĩ(z) if z
¯
< z < z̃,

I
¯

if z ≤ z
¯
.

(7)

where Ĩ(z̃) = I and Ĩ(z
¯

) = I
¯

.

Proposition 2 indicates that highly skilled entrepreneurs automate more tasks than lowly

skilled entrepreneurs. This is so because, as noted above, labor productivity appears like a TFP

in the optimal production, C(I?). Hence, there is a tradeoff for automation. On the one hand,

automation enables entrepreneurs to use the cheaper factor. On the other hand, it decreases the

productivity gain from the labor, C(I). Low-productive entrepreneurs automate less in order to

benefit from total productivity. As z increases, the benefit of labor productivity decreases; hence,

the entrepreneurs prefer cost-effective inputs. Therefore, I? is increasing in z. Our explanation

resembles one posited by Zeira (1998), who, by studying technological adoption across countries,

demonstrates that countries of low productivity have lower wages, and, hence, lower technological

adoption than those of high productivity countries. In our model, the wage rate is the same for

all firms, and firms differ only in their productivity.

Observe that in partial equilibrium (when R is fixed), the convexity of v does not impact the
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optimal choice of I because it does not appear in equation (6). This is thanks to two assumptions:

constant returns to scale production function and competitive capital market. To see this, first,

observe that if optimal I? is interior, then the capital intensity is a function of automation choice:

k/` = γI . The interior solution implies that the entrepreneur is indifferent between using capital

or labor for the marginal task. Because effective costs are the same for both technology (an

implication of combining conditions (5a) and (5b)), the level of production must be the same,

which leads to k/` = γI . Thanks to the constant returns to scale assumption implies that the

marginal product of capital is a function of capital intensity, productivity, and automation choice.

Having established that capital intensity depends on automation level, the marginal product of

capital is a function of productivity and automation choice. At the optimum, marginal product of

capital must be equal to rental rate. The competitive market assumption for capital market leads

rental rate to be independent of the entrepreneur’s choice. Hence, automation choice is function

of productivity and rental rate.

k

`
= γI? & MPK(k/`, z, I?) = R =⇒ MPK(z, I?) = R =⇒ I?(z,R).

Therefore, if R is fixed (for example, in an open economy) the underlying reason for convex labor

cost v is not important for the choice of automation. However, it impacts employment level, hence

profit. Therefore, in general equilibrium of a closed economy, the shape of v alters the capital and

labor demand, changing the rental rate and automation decision of entrepreneurs.

2.4 Top Income Distribution

Now, we can characterize the top income distribution. Individuals whose skill level is below

z? become workers and earn wages w while individuals whose skill level is above z? become

entrepreneurs and earn profit π(z). Because π(z) ≥ w for entrepreneurs, the top income percentile

consists of entrepreneurs. As a result, we need only to characterize the profit function for top

income distribution.
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Recall from the first order conditions that zY ? = k?R and zY ? = `?(w + v′(L?)). If we

multiply the first one with I? and the second one with (1− I?) and sum them, we get:

zY ? = RI?k? + L?(w + v′(L?)).

Hence, the profit function is given by:

π(z) =zY ? −RI?k? − wL? − v(L?)

=v′(L?)L? − v(L?).

To develop a closed-form solution, we need more structure. Assume that v(L) = Lα, where

α > 1. Then:

π(z) = (α− 1)L?α.

Imposing the functional form of v into the entrepreneur’s problem gives us:

L(z) =

[(
zC(I?)

RI?

) 1
1−I?

− w

] 1
α−1 (

1

α

) 1
α−1

.

Because we are interested in top income, let’s focus on high z. Suppose that zmax > R, in this case,

automation technology clearly binds for top skilled entrepreneurs. To see this, consider z > R.

If an entrepreneur automates all tasks, then she has a linear production function and makes an

infinite profit. Hence, I binds for high-enough z.

By plugging labor demand and I? = I into the profit function, we get:

π(z) = (α− 1)

[(
zC(I)

RI

) 1
1−I

− w

] α
α−1 (

1

α

) α
α−1

. (8)
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The profit function is convex in z. I ∈ (0, 1) implies that 1/(1 − I) > 1. Similarly, α > 1

implies α/(α− 1) > 1. Convexity implies that there is a superstar effect (Rosen, 1981): the profit

is increasing in z disproportionately. A highly productive entrepreneur’s earnings are much higher

than those of an entrepreneur of low productivity.

Observe that the convexity of the profit function increases with automation technology I.

This is so because the automation constraint in the entrepreneur’s problem binds stronger for

high skilled than low skilled. Hence, once this constraint is relaxed, the return is higher for a

highly skilled entrepreneur. For simplicity, consider two entrepreneurs: one has a high z so that

automation technology binds, and the other has a low z that does not automate all automatable

tasks. An increase in I does not affect the choice of the entrepreneur who has low z, whereas now

the entrepreneur who has high z can enlarge its production and increase its profit. Therefore, the

value of relaxing the automation constraint increases with z. This implies that an improvement

in automation technology increases the convexity of the profit function.

The convexity of the profit function also increases with a reduction in the monitoring cost-

i.e., a decrease in α. The monitoring cost is the principal cause of the decreasing returns to scale.

As the monitoring problem is relaxed, entrepreneurs can enlarge their span of control. Since the

enlargement is bigger for highly productive entrepreneurs, this leads to an increase in the convexity

of the profit function.

To characterize the distribution of profits, we need to know how productivity z is dis-

tributed. It is well-known that the top income distribution of income is well approximated by a

Pareto distribution. Moreover, the power of a Pareto distribution is also a Pareto distribution.

Therefore, if z is Pareto distributed, then the convexity of the profit function implies that the

distribution of profit has a Pareto tail.

Proposition 3. Suppose the distribution of entrepreneurial productivity, z, is Pareto with shape

parameter λ, the monitoring cost function is v(L) = Lα, and λ(1 − I)(α − 1) > 1.7 Then, the

7Proposition 1 can be extended to any unbounded distributions as long as the labor demand remains finite. For
the Pareto distribution, we need λ(1− I)(α− 1) > 1 to have an equilibrium.
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distribution of profits has a Pareto tail with shape parameter λ(1− I)α−1
α

.8

The Pareto parameter gives us a measure for inequality (Gabaix, 2016). The lower tail

parameter means higher inequality. In this model, the Pareto parameter of the profits has three

components: entrepreneurial skill distribution (λ); the convexity of the labor cost function (α);

and the automation technology (I). Since (α − 1)/α < 1, both automation and the labor cost

make income distribution thicker. As I increases or α decreases, the Pareto parameter goes down,

and, consequently, inequality at the top increases.

Under these conditions, decreasing returns come from automation technology and the cost

of labor. As discussed above, the convexity of the profit function increases with improvement in

I and decreases with α. This leads to top-skilled entrepreneurs capturing a higher share of total

profits. As the severity of the diseconomies of scale decreases, top income inequality increases.

Under the assumption of the constant returns to scale profit function, only the most skilled

entrepreneur produces and others work for him because there is no limit to scaling the production

function. If everything can be automated (i.e., I = 1), or if there is no convex cost of labor(i.e.,

α = 1), then the profit function is constant returns to scale. In such a situation there is no limit for

entrepreneurs to scale up their production, and so only the most productive individual becomes

an entrepreneur. Consequently, as I goes up, inequality also increases because the limit on scaling

up production is lessened.

This result does not depend on occupational choice. Because the most productive en-

trepreneurs always become entrepreneurs, independent of automation technology, occupational

choice does not impact the mechanism here. The same result could be achieved using a fixed type

of individuals, with no heterogeneity among workers. An important assumption for this result

is that an individual can only have a claim on a single firm, and so the top income distribution

mimics the top profit distribution.

8We say that the tail distribution of F is distributed by G if F (x)/G(x)→ 1 as x→∞. Observe that including
capital income, RK, does not impact the tail of income distribution of entrepreneurs.
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The primary aim of this paper is not to formulate a theory specifically for a Pareto tail

but rather to develop a theory that explains the potential changes occurring within the tail. In

pursuit of this objective, we assume that productivity follows a Pareto distribution. One theory

that generates a Pareto distribution for productivity is the random growth model, as outlined in

the work by Gabaix (2009). In the random growth model, an entrepreneur’s productivity evolves

following Brownian motion, with a constant growth rate accompanied by stochastic diffusion.

Under steady-state conditions, the productivity distribution exhibits a Pareto tail. The shape

parameter of this tail is inversely related to the growth rate and positively associated with the

exit rate. Our model can be seen as the steady state of a random growth model. However, Gabaix

et al. (2016) has shown that the basic random growth model does not adequately account for

the rapid decline in the Pareto parameter of income distribution. Consequently, they introduce

two modifications that enhance the model’s performance. One of these modifications relates to

the change in scale dependence or the convexity of the return to skill. Our theory can be viewed

as a variation of this scale dependence, allowing for the generation of dynamics in top income

inequality that align with data.

2.5 A Measure for Automation: Capital Share

We build our model using the task-based framework developed by Acemoglu & Restrepo (2018b).

An implication of this type of production function is that I corresponds to the capital share of

income. This is also true in our model. To see this, consider the entrepreneur’s first-order condition

with respect to capital. This condition implies that the capital share of production within a firm is

I, I?(z)zY = RI?(z)k?(z). If automation level binds for every entrepreneur, then in the aggregate,

the capital share of income is I:

∫
I?(z)zY (z)dG(z) =

∫
RI?(z)k?(z)dG(z) =⇒ I =

RK̄∫
zY (z)dG(z)

.

Therefore, the remaining part, 1 − I, accrues to labor and the entrepreneur. If automation

technology binds for every entrepreneur, then the automation level would be equal to capital
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share. Even though the capital share does not change for low productive entrepreneurs, because

the market share of top productive entrepreneurs increases, overall capital share increases. This

implies that the measure of automation is highly correlated with the labor share.

The model suggests that an increase in automation technology results in a corresponding

increase in capital share. However, ongoing discussions in the academic literature focus on the

changes in factor distribution. For instance, Barkai (2020) argues that the decline in labor share

has not been compensated by capital share. Nonetheless, these findings are sensitive to underlying

assumptions and time frames. Karabarbounis & Neiman (2019), on the other hand, propose that

measurement errors in capital might be a more plausible explanation than changes in profit share.

As a result, the debate on who benefits from the disappearing labor share remains unresolved.

Furthermore, other factors could contribute to the decline in labor share (see Grossman &

Oberfield (2022)). Even though automation is the only reason for the change in capital share in

the model, when we test the model prediction in the next section, we control for other possible

channels, namely markups and the price of capital. Our approach aligns with the existing literature

that employs a task-based production function. Acemoglu & Restrepo (2021) estimate the impact

of automation on wage inequality using a task-based framework and also consider labor share of

income as an automation measure while controlling for other variables. Similarly, Moll et al. (2021)

adopt a similar strategy to analyze the impact of automation on wealth inequality. We follow this

literature and use capital share as a proxy for automation and control for other confounding

factors.

2.6 Back of Envelope Calculation

Next, we do a back-of-the-envelope calculation for the impact of the improvement in automation

technology on the change in the Pareto parameter of the top income distribution. Recall that

our theory states that β = λ(1− I)α−1
α

. We know that the labor share in the US decreased from

approximately 64% to 59% between the 1970s and the 2010s. Assuming the Pareto parameter
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for skill distribution and the convexity of monitoring cost function has not changed (i.e., all the

decrease comes from the change in I), this implies that:

β̂2010

β̂1970

=
1− I2010

1− I1970

≈ 0.92.

In other words, the model predicts an 8% decrease in the Pareto parameter. In the WID data, the

estimated Pareto parameter decreased from 2 to 1.5 during the same period. This corresponds to

an approximately 25% decrease. In other words, our model can explain a third of the decrease in

the Pareto parameter.

Clearly, the automation level constraint might not bind for all entrepreneurs. However, as

automation increases, the market share of highly productive (hence, low labor share) entrepreneurs

increases. Thanks to the reallocation channel, we expect labor share to decline at a higher rate

than the change in automation level. Furthermore, there are other factors that lead to a decline

in labor share. In this regard, this analysis provides an upper bound.

3 Motivating Facts

3.1 Importance of Business Income

In this subsection, we discuss the importance of the change in the return to entrepreneurial skill

for the dynamics of top income inequality.

The right panel of Figure 2 shows the income composition of the top 0.1% (excluding

capital gains) across the last 50 years. Since the 1960s, the share of business income (dashed line

in the graph) has almost doubled. Together with wages and salaries, they account for 80% of the

income of top income earners (Piketty & Saez, 2003; Atkinson & Lakner, 2017). Moreover, the

major component of the increase in the top income share can be accounted for by the increase in

business income (Guvenen & Kaplan, 2017; Smith et al., 2019; Bakija et al., 2012). Sixty percent
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Figure 2: Pareto Parameter for Business Income and Income Composition of Top 0.1%
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Left panel: 5-year moving averages of the fitted Pareto parameter for business income for top entrepreneurs. Right
panel: income composition of top 0.1%. Capital gains are excluded from income.
Source: Author’s calculation using IPUMS CPS ASEC and Piketty & Saez (2003).

of the growth of income share of top earners can be accounted for by managers, executives,

entrepreneurs, supervisors, and financial professionals (Bakija et al., 2012). In other words, since

the 1960s, the change in the return to entrepreneurial skills has been the main driver of the top

income inequality.

The right panel, which shows the importance of business income, does not imply that

inequality in business income increased. To show that inequality increased, the left panel of Figure

2 plots the fitted Pareto parameter for business income for top entrepreneurs. It is calculated using

IPUMS CPS ASEC (Flood et al., 2018). Details of the estimation are discussed in Section 3.3.

We plot the five-year moving averages. The figure shows that since the 1970s, there has been a

10% decrease in the Pareto parameter for business income. This implies an increase in business

income inequality among top entrepreneurs. The Pareto parameter shows a similar pattern in the

business income share: both inequality and share increased significantly in the mid-1980s, and

after 2000 they stabilized.
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3.2 Automation and Firm Size Distribution

One of the main assertions of this paper is that automation enables entrepreneurs to scale up

their production. This implies that the average firm size increases with the automation level.

Equation (8) shows that profit is a power function of employment. Hence, as the convexity of the

profit function increases, the convexity of the optimal labor choice as a function of productivity

increases. This implies that the employment share of highly productive entrepreneurs is increasing,

and, thus, that the average firm size in the entrepreneurial sector is increasing.

To determine whether higher automation leads to larger firms in the data, we regress the

change in firm size to a change in automation. Because this result is for the entrepreneurial sector,

we only consider the employment distribution across private firms. We obtain the data from the

Amadeus database of Bureau van Dijk/Moody’s Analytics, which provides information about

private firms in European countries. For each industry-country pair, we calculate two measures:

average firm size and the share of the top 1% of firms in employment. Because we do not have a

direct measure of automation, we use information technology intensity, defined by total IT capital

over total capital. Eden & Gaggl (2018) show that an increase in IT intensity is associated with

reallocation of income from routine labor to non-rountine labor. This is inline with an increase in

automation technology, hence, following Eden & Gaggl (2018), we use IT intensity as a measure

for automation. We construct this measure using the data from EU KLEMS. We consider the

changes between 2006 and 2016 because the number of observations in the Amadeus database is

significantly low for previous years.

Table 1 presents the results. All of the measures of change in firm size distribution are

positively correlated with IT intensity. This implies that industries that observed a higher rate of

IT growth also observed a higher rate of firm size growth. A percentage increase in the growth

of IT intensity leads to an increase in the growth of the average firm size in the employment of

about 0.6%. Also, the growth rate of the employment share of the top 1% of firms increases by

0.3%. Furthermore, as Bessen (2017) and Brynjolfsson et al. (2008) show, inter terms of sales,

higher IT intensity leads to higher market concentration. Stiebale et al. (2020) estimate that the
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Table 1

Dependent variable:

∆log(Ave. FS) ∆log(Top Emp Share)

(1) (2)

∆log(IT Intensity) 0.581∗∗∗ 0.276∗

(0.147) (0.141)

Nobs 182 182

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

impact of robots on productivity and sales is greater in larger firms than in smaller firms. Hence,

the data are in line with the model’s prediction that automation enables entrepreneurs to grow

their businesses.

3.3 Labor Share and the Pareto Parameter

In this subsection, we consider the relationship between labor share and the Pareto parameter in

the data. As we discussed above, capital share of income provides a measure for automation level

in them model. Following Acemoglu & Restrepo (2021) and Moll et al. (2021), we use labor share

for the measure of 1− I.

The implication of our main result is that

logβ = logλ+ log(1− I) + log(α− 1)− log(α).

This implies that there is a one-to-one relationship between the Pareto parameter and the labor

share, 1− I. The model predicts that a percentage increase in 1− I leads to a percentage increase

of β.

We test this prediction in two different cases. First, we consider the industry-level panel
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data for the US. Second, we consider the country-level panel data. To test our theory, we regress

estimate the following equation:

∆logβit = γ∆log(labor sharet) + τt + ∆εit,

where i is industry or country, t is time, τt is the time fixed effect and ∆ is the first difference

operator. Under the assumption that skill distribution and the monitoring cost remain constant

across time, our theory predicts that γ is equal to one.

3.3.1 Measure for Labor Share

The labor share of income is defined as the total compensation of workers divided by the total

income. For the US industry-level data, we use the compensation of employees as a share of

the value-added GDP for each industry, using BEA’s industry-level GDP data (U.S. Bureau of

Economic Analysis, 2018). For our international level analysis, we use the labor share estimates

of Penn World Table 10.0 (Feenstra et al., 2015). Because BEA’s data start in 1987, we consider

the years between 1987 and 2016. For international comparison, we consider 1961-2015.

Observe that labor share in the model consists of two parts: wage and entrepreneurial

income. Accounting for self-employment income is not straightforward because it is difficult to

distinguish what fraction of income is returned to entrepreneurial skill and what fraction is returned

to own capital. How to incorporate self-employment income into factor share calculations is an

important methodological issue (Gollin, 2002). Using the split ratio in the corporate sector, PWT

divides self-employment income into labor and capital (Feenstra et al., 2015).
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3.3.2 Measure for Top Income Inequality

The main source of top income shares is the World Inequality Database (WID)9. WID relies on

tax data and is available for a wide range of countries. For international-level evidence, we use

data from WID. Specifically, we use pre-tax income (equally split between spouses) shares for the

top 0.1% and the top 1%.

We obtain the relative income share from WID and then estimate the Pareto parameter

using the following relation:

ˆRIS = 10
1−β̂
β̂ × 100.

Unfortunately, the tax data usually does not have information about the industry; thus, it

is difficult to obtain a good estimate of top income share by industry. Therefore, we use the CPS

ASEC microdata extracted from IPUMS (Flood et al., 2018). As discussed above, business income

is an important component of income for top income earners and our model is also about business

income. For this reason, we consider the distribution of income of self-employment workers.

Assuming that the right tail of income distribution follows a Pareto distribution, we estimate the

Pareto parameter using the maximum likelihood estimator.

A major drawback of public-use microdata is that the income is top coded in the data.

Because we are interested in the right tail of the income distribution, a significant fraction of the

observations is top-coded. To estimate the Pareto parameter with top-coded data, we follow the

strategy of Clemens et al. (2017). Let xi be the income of person i and let x̄ be the top code.

Observed income in the data is then:

x̃i =

xi if xi ≤ x̄,

x̄ if xi > x̄.

9We retrieved data from https://wid.world/.
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Assume that income distribution after qth percentile is distributed by a Pareto with shape

parameter β. The maximum likelihood estimator for the scale parameter is qth percentile of the

data. We denote it by xq. Then the maximum likelihood estimator for the Pareto parameter is

β̂ = argmax Π

[(
βxβq

xβ+1
i

)]Di (xq
x̄

)β(1−Di)
,

where Di indicates whether or not xi ≤ x̄ or not. The solution to this problem is

1

β̂
=

1

Nunc

[∑
log

(
xi
xq

)
+Ncenlog

(
x̄

xq

)]
,

where Nunc is the number of uncensored observations and Ncen is the number of censored obser-

vations.

Because a Pareto distribution can only approximate the right tail of the income distribution,

we consider the top 10%. To consistently estimate, we fit the Pareto tail if there are more than

30 observations in an industry-year pair. If there is an insufficient number of observations, we fit

the Pareto distribution to the top 15% and decrease the required number of observations to 20. In

total, we have 396 estimated parameters for non-agricultural industries10 between 1987 and 2016.

We take the 3-year averages in order to decrease the short-run fluctuations and reduce the

noise of the data. Because the labor share series of BEA starts in 1987, we obtain 9 observations

for each industry.

3.3.3 Result

Table 2 shows the regression results. The first three columns record the results using US industry-

level data, and the last column records the result using cross-country data. All columns control

for time-fixed effects. Columns 1 and 4 show that there is a positive correlation between the labor

share and the Pareto parameter, both at the industry level and at the country level. However, the

10We exclude agriculture, mining, utilities, other services, and public administration.
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Table 2: Results

Dependent variable:

log(Pareto Parameter)
US Industries International

(1) (2) (3) (4)

log(Labor Share) 1.312∗ 1.314∗ 1.324∗ 0.723∗∗

(0.736) (0.742) (0.777) (0.317)

log(Markup) 0.022 0.057
(0.292) (0.291)

log(Rel. Price of Equipment) 0.178
(0.250)

Time FE Yes Yes Yes Yes
Observations 124 124 124 288
R2 0.172 0.172 0.174 0.138

Note:All standard errors are clustered at the industry or country level. Rows are independent variables and columns
are dependent variables. The Pareto parameter for industries is estimated by fitting the Pareto parameter to the top
business income distribution using CPS ASEC data. The Pareto parameter for countries is taken from the World
Inequality Database. The labor share for industries is taken from BEA. The labor share for countries is taken from
Penn World Table version 10.0.
?p< 0.1; ??p< 0.05; ???p< 0.01

estimation is not exactly 1, as predicted by the model.

Automation is not the only cause that might lead to a decrease in labor share. Other reasons

for the decrease in the labor share might be the rise in markups (De Loecker et al., 2020), or a

decrease in the relative price of equipment Karabarbounis & Neiman (2013). In the third column,

we control for the change in markups and attribute all other changes in labor share to automation.

To estimate the average markup for each industry and year we employ the estimation method of

De Loecker et al. (2020). Including the change in markup does not impact the coefficient of labor

share. In the fourth column, we also include the change in the relative price of equipment. We

constructed an investment price deflator using BEA’s NIPA table and divide it with the personal

consumption expenditure deflator to get the relative price. The result does change, the coefficient
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of labor share remains the same and other parameters are insignificant. In other words, changes in

the markup or relative price of capital do not explain the decrease in the Pareto tail. All changes

in the Pareto tail can be attributed to changes in labor share that are not related to markup or

capital price.

3.4 CEO Compensation

Even though our model is about entrepreneurs, it is possible to consider entrepreneurs as CEOs.

In an extended model, if we assume that there is a competitive market for CEOs and that firms are

competing to hire CEOs, then the Bertrand competition among firms leads the CEO to capture

all the surplus. Similarly, if CEO’s compensation is determined by Nash bargaining between the

CEO and the firm, then the CEO would capture a share of the surplus. In this regard, the model

predicts that an improvement in automation technology leads to an increase in the surplus, and,

hence, the CEO compensation. Indeed, there was a significant increase in CEO compensation in

the US, especially between the mid-1970s and the 2000s(Frydman & Jenter, 2010). In the 1970s,

median CEO compensation was $1.2 million, and in the 2000s it increased to $9.2.

In this subsection, we consider the impact of automation on the distribution of CEO com-

pensation. We use Compustat Execucomp for CEO compensation. The data is available since

1992, but the first year has a small sample size, so we dropped the first year. Since the data is

not top-coded, it is straightforward to calculate the Pareto parameter for each industry and year.

Because these are public firms, we believe that the top of the CEO distribution is populated by the

CEOs in this dataset. We repeat the same exercise with the previous subsection by only changing

the dependent variable.

Panel A in table 3 shows that in the industries where labor share decreased, the Pareto

parameter of CEO compensation decreased. The positive result remains there even after we control

for the change in industry-level markups and the relative price of capital goods. In other words,

this table provides evidence that the distribution of CEO compensation is also impacted by a
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Table 3: CEO Compensation

Dependent variable:

log(Pareto Parameter)

(1) (2) (3)

Panel A: Pareto

log(Labor Share) 1.025∗∗ 1.311∗∗∗ 1.312∗∗∗

(0.406) (0.509) (0.506)

log(Markup) 0.863 0.864
(0.639) (0.638)

log(Rel. Price of Capital) 0.027
(0.242)

Panel B: P90/P50

log(Labor Share) 0.252 0.356 0.362
(0.344) (0.354) (0.351)

log(Markup) 0.313 0.319
(0.218) (0.218)

log(Rel. Price of Capital) 0.184∗

(0.107)

Panel C: P99P90

log(Labor Share) −1.165∗∗∗ −1.057∗∗ −1.065∗∗

(0.302) (0.427) (0.431)

log(Markup) 0.323 0.317
(0.545) (0.546)

log(Rel. Price of Capital) −0.210
(0.255)

Observations 325 325 325
R2 0.079 0.087 0.087

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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change in labor share that is not related to markup or a change in capital price.

Panel B and panel C show the impact on different percentiles. In panel B, we consider

the inequality between the median and the 90th percentile. It turns out that changes in labor

share have no impact on any specification. However, there is a negative impact on the difference

between 90th and 99th percentile. As predicted by the model, the gap between super-rich CEO

and rich CEO is increasing as labor share goes down, and this impact is affected by controlling

markup and relative price of capital. This implies that the main impact of automation is for the

top of the CEO compensation distribution.

Table 4: Capital Intensity vs CEO Compensation

Dependent variable:

log(CEO Compensation)

log(Capital Intensity) 0.047∗∗

(0.019)

Firm x CEO FE Yes
Time FE Yes

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Another implication of the model is that CEO compensation increases with the capital

intensity of the firm. Without the convex labor cost, the homothetic production function leads

to the same capital per labor across firms. Because of the convex cost, firm size impacts the

relative marginal cost of inputs, hence the capital per labor ratio. Highly productive firms use

more capital-intensive technology, and hence, there is a positive relationship between capital per

labor and CEO compensation.

To check this relationship in the data, we use the Net Property, Plant, and Equipment from

the Compustat data set. We use the investment price deflator to convert it to real value. The price

deflator is calculated using BEA’s NIPA table. Similarly, we deflated the CEO compensation using

the personal consumption expenditure deflator, which we accessed from FRED. We estimated the

impact of capital intensity on CEO compensation using firm-CEO pair fixed effects. Table 4 shows
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that there is indeed a positive relationship between these two variables. As firms increase their

capital intensity, they offer higher compensation for their CEOs.

Overall, the pattern in CEO compensation is in line with the prediction of the model. In

the industries where labor share is lower, the tail of CEO compensation is thicker and the gap

between 99th and 90th percentile is increasing faster than the gap between 90th percentile and the

median.

3.5 Monitoring Cost or Automation?

The main result of this paper does not allow us to distinguish the impact of change in the convexity

of labor cost function (α) from changes in automation (I). In this section, we present evidence

supporting automation as the primary channel. One implication of the model is that a change in

α directly affects the capital intensity of firms. However, our analysis of Compustat data shows

that the elasticity of capital intensity with respect to firm size has been increasing since the 1980s,

which contradicts the model’s implication.

To see how α impacts the elasticity of capital intensity with respect to firm size, let’s

consider the optimal capital intensity of a firm (combining (5a) and (5b) and L = (1 − I)`,

K = Ik):

log

(
K

L

)
= log

(
1− I
I

w + v′(L)

R

)
.

This implies that for large firms:

log

(
K

L

)
≈ constant+ (α− 1)log(L).

This result indicates that the elasticity of capital intensity with respect to labor is a function

of α. The model predicts that as α decreases, this elasticity decreases as well. Intuitively, the
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optimality condition implies that the marginal rate of technological substitution (MRTS) should be

equal to relative marginal costs. Since the production function is homothetic, MRTS is a function

of capital intensity. Hence, capital intensity across firms depends on the relative marginal cost.

The primary source of difference in marginal costs among firms is α. As α decreases, marginal

costs become similar across firms, resulting in similar capital intensity.

To assess how α is changing, we examine the relationship between capital intensity and

employment level. For each year using Compustat data, we estimate the following equation:

log(Capital Intensityit) = βt + βEmp,tlog(Employment) + εit.

Figure 3 plots the estimated coefficient. It shows that the elasticity of capital intensity

with respect to employment level has been increasing since the 1980s and only started to decline

in the late 2010s. Thus, our model predicts that the main channel is not the decrease in α, but the

increase in the automation level I. In other words, the difference in capital intensity is increasing

across firms. In the model, this implies that wage premium is becoming more important. This

might mean that monitoring cost is actually increasing. One explanation for this might be that

workers have more ways to shirk. For example: playing games on their phone, messaging with

friends, browsing the internet, etc.

It’s important to note that this analysis does not entirely rule out the possibility of a decline

in α. As discussed earlier, the convex cost of labor might be influenced by labor market power,

and our current analysis cannot account for changes in local labor market power. The Compustat

dataset only includes data on large firms, and thus, it might not capture firms with local labor

market power. Despite this limitation, the evidence still supports the importance of automation,

rather than α, in explaining the increase in top income inequality.
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Figure 3: Elasticity of capital intensity

3.6 Beyond Top Income Inequality

In this section, we discuss our model’s implications for issues other than top income inequality.

Market concentration: Our model predicts that market concentration, either measured

as the top firms’ share in sales or as employment, increases with automation. Although we did

not prove it formally, it is clear that the share of the top firm in sales and employment size

increases as the automation level increases. Autor et al. (2020) show, first, that “superstar” firms

are capturing a larger share of the market and, second, this phenomenon is more pronounced

in industries in which labor share is falling faster than in other industries. Autor et al. (2020)

interpret the increase in market power as an important driver of the decrease in the labor share.

In our model, the causality is reversed. Here, automation leads to a decline in the labor share

and an increase in market concentration. Moreover, there is also a significant correlation between

information technology (IT) intensity and market concentration (Brynjolfsson et al., 2008; Bessen,

2017). We believe IT is an important part of automation technology; hence, high IT intensity is

an implication of more automation. In this regard, these observations are consistent with our

model’s prediction of market concentration.
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Decreasing Entrepreneurship Rate: One crucial margin in the model is an occupa-

tional choice. There are two channels through which automation impacts the entrepreneurship

rate. First, it increases the return to entrepreneurial skill, and, hence, leads to a higher en-

trepreneurship rate. Second, it changes the outside option by altering the equilibrium wage rate.

Automation might increase or decrease the wage rate. Similar to Acemoglu & Restrepo (2018a),

there are replacement and productivity impacts. First, as capital replaces labor, labor demand

decreases, dampening the wage. Second, automation enables firms to allocate workers to more

productive tasks, and, therefore, it increases productivity and wages. Due to occupational choice,

there is an additional effect in this model. If the increase in wage rate is more significant than

the return to entrepreneurship, then the share of individuals who own a business goes down. Oth-

erwise, the entrepreneurship rate declines. Which one dominates depends on the parameters of

the model. Numerical exercises (available upon request) illustrate a U-shape relationship between

automation level and entrepreneurship rate. In the early stage of automation, the productivity

effect dominates, and hence, the marginal entrepreneur becomes a worker. In the later stage of

automation, the replacement effect dominates, reversing the marginal individual’s decision. Hence,

we expect to see a decreasing business dynamism in the early stage of automation. This aligns

with the decrease in the start-up rate in the US (Decker et al., 2014; Pugsley & Sahin, 2019;

Salgado, 2019).

Wealth Inequality: Wealth inequality in the US also increased during the same period

(Saez & Zucman, 2016). For two reasons, entrepreneurial income is one of the important drivers

of wealth concentration (Quadrini, 2000; Cagetti & De Nardi, 2006). First, it is risky: each

period the entrepreneurs’ businesses might fail and lose their business income. Second, because of

financial frictions (for example they need to provide collateral), the return to capital is higher for

entrepreneurs. This provides an incentive for entrepreneurs to save, and consequently, it generates

wealth concentration more than income concentration. Our model can explain the rise in wealth

concentration. Because an improvement in automation technology increases income concentration,

it leads entrepreneurs to face larger business income risks. When entrepreneurs’ businesses fail,

they become regular worker ad loses a significant share of their income. Through the first channel,

this causes higher wealth concentration. Furthermore, as automation increases, entrepreneurs
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demand more capital and financial constraints become more severe. Koru (2020) shows that a

dynamic version of this model with financial frictions can explain one-fourth of the rise in the

share of the top 1% in wealth.

4 Conclusion

Since the 1980s, income distribution in the US has become more skewed. While rich people

have been getting richer, the super-rich have become especially rich. In this paper, we argue that

improvements in automation technology contributed to the widening gap between top earners. Our

theory states that if the cost of labor is convex, then entrepreneurs have a decreasing returns to

scale production function. As automation technology improves, dependence on labor deteriorates

and the importance of the convex cost decreases. This lessens the severity of diseconomies of

scale and increases the return to entrepreneurial skill. Therefore, income inequality among the

top earners increases. Using industry-level data for the US and cross-country data, we provide

evidence that an improvement in automation technology leads to a lower Pareto parameter.

According to our model, the Pareto parameter of top income distribution is a function

of three parameters: automation level; skill distribution; and the convexity of labor cost. We

know that automation has increased since the 1970s, and, therefore, we focus on the impact of

automation in this paper. However, we believe that the other two parameters are also important

and deserve attention.

We provide one explanation for the convex cost of labor: efficiency wage. However, any

theory that leads to firm size premiums should deliver similar results. We show that when the firm

size wage premium decreases, the gap between large firms and small firms decreases (Bloom et al.,

2018; Cobb & Lin, 2017). This might constitute evidence that the monitoring cost decreasing, thus

also contributing to top income inequality. However, as we show above, the change in the elasticity

of capital intensity to employment size indicates that convexity of labor cost is not decreasing.
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Another interpretation of convex cost is labor market power. Even though the current

model is too simple to analyze any market power, it provides a first step in that direction. Yeh et

al. (2022) show that labor market power in the manufacturing sector was declining between the

1970s and early 2000s, and started to increase sharply afterward. This can be interpreted as a

decline in the convexity of the labor cost function. Our model predicts that that leads to a decline

in the Pareto tail until the 2000s and a sharp increase afterward. The model fails to explain why

top income inequality is not decreasing recently. We think that impact of labor market power and

top income inequality is an important question.

Although we see this paper as a model of automation, the model is open to other inter-

pretations. With slight modification (by specifying the supply and price of the outsourcing), it

can be seen as a model of outsourcing. We believe that as a research subject, outsourcing is as

important as automation, and it is crucial to distinguish them. The outsourcing ramifications of

his paper remain to be examined.

Statement: During the preparation of this work the author used ChatGPT in order to

improve readability and language. After using this tool/service, the author reviewed and edited

the content as needed, and he takes full responsibility for the content of the publication.
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A Online Appendix

Lemma 1. If wage rate w(L) is strictly increasing in L and positive, then w(L)L is strictly convex.

Proof. Let L1 > L2 and define Lλ = λL1 + (1−λ)L2 for some λ ∈ (0, 1). Suppose w(L)L

is not is not convex, then there exist λ ∈ (0, 1) such that

w(Lλ)Lλ ≥ λw(L1)L1 + (1− λ)w(L2)L2

(1− λ)[w(Lλ)− w(L2)]L2 ≥ λ[w(L1)− w(Lλ)]L1.

Since w(L) is strictly increasing and positive, w(Lλ) > w(L1) and w(Lλ) < w(L2). This implies

that left hand size is negative and right hand size is positive. Hence, it leads to a contradiction.

This proves that w(L)L is a convex function. �

A.1 Proof of Proposition 1

The proposition assumes the distribution of z is bounded above. Here, we prove for unbounded

distribution, under the assumption that total labor demand is finite. For the Pareto distribution,

parameters must satisfy λ(1− I)(α− 1) > 1, otherwise labor demand is infinite since E(L) =∞.

Clearly, for bounded z, labor demand is finite for positive prices.

In order to prove the existence and the uniqueness of equilibrium, first we consider a

constraint problem, in which cutoff for being entrepreneur is fixed. In such setting, we show that

there exist a cutoff skill level z̄ such that for z > z̄ there exist no positive prices that clears labor

and capital market at the same time. This allows us to bind the set of skill level. Then, we show

that there exist z? such that market clearing wage rate and profit for cutoff entrepreneur is same,

hence z? together with associated wage and rental rate constitute the equilibrium.

For a given prices {w,R}, labor demand for entrepreneur z is the solution to v′(L(z)) =

1



(
zC(I?(z))

RI
?(z)

)1/(1−I?(z))

− w, where C(I) = exp

(
1∫
I

lnγi

)
. Since v is twice continuously differentiable

and strictly convex, inverse of v′ exists. Define φ := v′−1. For ease of notation, we drop argument

for I?(z) and write it as I?. Define M(R, z) =
(
zC(I?)

RI?

) 1
1−I?

. Since labor demand is decreasing

with R, and increasing with z, MR < 0, Mz > 0, where Mi is partial derivative with respect to i.

The labor market and capital market clearing conditions when the cutoff skill is z′ are:

∞∫
z̃

φ [M(R, z)− w] dG(z) = G(z?), (9a)

∞∫
z̃

I?

1− I?
φ [M(R, z)− w]

M(R, z)

R
dG(z) = K̄, (9b)

where z̃ = max{z′, w1−I?RI?/C(I?)} is the least productive active entrepreneur, given prices

{R,w}, i.e. M(R, z̃) = w if z̃ 6= z′. Anyone above z̃ hires positive mass of labor, and anyone

below z̃ does not hire.

Define R`(w, z
′) as the labor market clearing rental rate when the wage is w and individuals

with z > z′ are entrepreneur. Define similar object Rk(w, z
′) for the capital market. Observe that

both R`(w, z) and Rk(w, z) is decreasing in z, since increase in z decreases the total demand, but

does not decrease the supply, hence R must decrease for a fixed wage. The intersection of these

two curves is the rental rate that clears both markets for a given w and z′.

Observe that boundary condition for labor demand is not satisfied, i.e. for a given positive

R as the wage rate converges to 0 labor demand does not diverge. Therefore, decrease in the wage

rate might not be sufficient to clear the market. We are going consider this boundary case in order

to find when markets are not going to clear.

Now we show that there exist unique z̄ such that R`(0, z̄) = Rk(0, z̄). To do this, first

we show that Rk(0, z) is bounded above, whereas R`(0, z) is not. Second, we show that for high

enough z, Rk(0, z) > R`(0, z), hence, by the intermediate value theorem, they must intersect.

Lastly, we show that at the point where they intersect, derivative of R` is higher than Rk, i.e.

2



around z̄, R`(0, z̄)−Rk(0, z̄) is decreasing, so that they can only intersect once. Notice that z̃ = z′

when the wage rate is zero.

Lemma 2. As z → zmin, R`(0, z)→∞, and Rk(0, z)→ t <∞.

Proof. Let z → zmin. Suppose the contrary, R`(0, z) → p < ∞, and p > 0. Take small

ε > 0, by continuity of R`(0, z), there exist δ > 0, such that R`(0, z
′) ∈ (p − δ, p + δ) for any

z′ ∈ (zmin, zmin + ε). Define k := φ [M(p+ δ, zmin] > 0. Let z′ be such that (1−G(z′))k > G(z′),

and z′ ∈ (zmin, zmin + ε). Because k > 0 = G(zmin), such z′ exists. Since R`(z
′) < p+ δ and labor

demand is decreasing with R, labor demand for each z is higher than k. Hence, for small enough

z′:

∞∫
z′

φ [M(R`, z)] dG(z) >

∞∫
z′

kdG(z) = (1−G(z′))k > G(z′),

which contradicts that R` clears the market. Therefore, with a finite R`, the labor market cannot

be cleared. Hence R`(0, z)→∞ as z → zmin.

Now consider the capital market condition (9b) when z? = zmin. As Rk converges to

zero, demand goes to infinity, and as Rk diverges, demand converges to 0. Hence, there exist

Rk(0, zmin) <∞ that clears the capital market. By continuity, Rk(0, z)→ R(0, zmin) as z → zmin.

�

Since R`(0, z) diverges and Rk(0, z) converges to some positive number as z → zmin, this

implies that for low enough z, R`(0, z) > Rk(0, z). We now show that inequality must be flipped

for high enough z.

Lemma 3. For high enough z′, Rk(0, z
′) > R`(0, z

′).

Proof. Observe that as z′ → ∞, R`(0, z
′) and Rk(0, z

′) converge to 0. To see this, for

a positive R, both total labor demand and total capital demand converges to 0, in contrast capital

supply is fixed and labor supply converges to 1. Hence, R` and Rk converge to 0 in order to clear

the market. As Rk converges to 0, I? converges to I, every entrepreneur automates all possible

3



tasks. Then, capital demand is:

I

1− I
R
− 1

1−I
k

∞∫
z′

φ [M(Rk, z)− w] (zC(I))
1

1−I dG(z) = K̄.

Since R
− 1

1−I
k diverges, it must be the case that integral converges to 0 in order to have finite demand.

Observe that φ(M(R, z))(zC(I))
1

1−I > φ(M(R, z))(zminC(I))
1

1−I > 0 for z > zmin. Therefore,

∞∫
z′

φ [M(Rk, z)] (zC(I))
1

1−I dG(z) >

∞∫
z′

φ [M(Rk, z)] (zminC(I))
1

1−I dG(z)→ 0.

However, labor demand must be equal to labor supply G(z′), close to 1 for large z′. Hence,

for large enough z′, it must be the case that:

1 ≈
∞∫
z′

φ [M(R`, z)] dG(z) >

∞∫
z′

φ [M(Rk, z)] dG(z) ≈ 0. (10)

Since M is decreasing in R, it must be the case that R`(0, z
′) < Rk(0, z

′) for large z′. �

Lemma 4. Let R`(0, z̄) = Rk(0, z̄). Then |R′`(0, z̄)|> |R′k(0, z̄)|. In other words, R`(0, z̄)−Rk(0, z̄)

is decreasing around z̄.

Proof. Let R`(0, z̄) = Rk(0, z̄) = R̃. Using implicit function theorem, taking derivative

of labor market condition (9a) with respect to z̄ gives us:

−φ
[
M(R̃, z̄)

]
g(z̄) +

∞∫
z̄

φ′
[
M(R̃, z)

]
MR(R̃, z)R′`(z̄)dG(z) = g(z̄). (11)

Similarly, derivative of capital market condition with respect to z̄ is:
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0 = − I?(z̄)

1− I?(z̄)
φ
[
M(R̃, z̄)

](M(R̃, z̄)

R̃

)
g(z̄) +

∞∫
z̄

[
I?

1− I?
φ′
[
M(R̃, z)

]
MR(R̃, z)R′k(z̄)

M(R̃, z)

R

+
I?

1− I?
φ
[
M(R̃, z)

]MR(R̃, z)R′k(z̄)R̃−M(R̃, z)R′k(z̄)

R̃2

+
I?RR

′
k(z̄)

(1− I?)2
φ
[
M(R̃, z)

]M(R̃, z)

R̃

]
dG(z).

Recall that I?(z) is decreasing in R, hence I?R ≤ 0. Since R′k < 0, the last term of the

integrand is positive for all z. Similarly, the second term of the integrand is also positive, since

MR < 0. Therefore:

I?(z̄)

1− I?(z̄)
φ
[
M(R̃, z̄)

](M(R̃, z̄)

R̃

)
g(z̄)>

∞∫
z̄

[
I?

1− I?
φ′
[
M(R̃, z)

]
MR(R̃, z)R′k(z̄)

M(R̃, z)

R

]
dG(z).

Moreover, I?/(1−I?) and M(R, z) are increasing in z. We can simplify the above expression

by replacing them with I?(z̄)/(1− I?(z̄)) and M(R, z̄) :

φ
[
M(R̃, z̄)

]
g(z̄) >

∞∫
z̄

[
φ′
[
M(R̃, z)

]
MR(R̃, z)R′k(z̄)

]
dG(z).

Using derivative of labor market condition, equation (11):

∞∫
z̄

φ′
[
M(R̃, z)

]
MR(R̃, z)R′`(z̄)dG(z) >

∞∫
z̄

[
φ′
[
M(R̃, z)

]
MR(R̃, z)R′k(z̄)

]
dG(z),

∞∫
z̄

φ′
[
M(R̃, z)

]
MR(R̃, z)(R′`(z̄)−R′k(z̄))dG(z) > 0.

Which implies that R′`(z̄) − R′k(z̄) < 0, since φ′ > 0 and MR < 0. In other words, if R̃

clears both labor and capital market, when we increase z, rental rate that clears the labor market

decreases much faster than capital market. �

Lemma 5. There exists a unique z̄, such that R`(0, z̄) = Rk(0, z̄)
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Proof. Lemma 2 shows that R`(0, z) > Rk(0, z) for low z, and lemma 3 shows that

R`(0, z) < Rk(0, z) high z, therefore, they must intersect. Lemma 4 shows that they can at most

intersect once, since at the point they intersect, R`(0, z̄)−Rk(0, z̄) is decreasing. If they intersect

once more, then it must be the case that the difference is increasing in the second intersection.

Hence z̄ exists and it is unique. �

Now, we prove that for z? < z̄, there exist positive prices that clears the market.

Lemma 6. For z? < z̄, there exist w > 0 and R > 0 that labor market condition, equation (9a),

and capital market condition, equation (9b), hold.

Proof. First, notice that R`(w, z
?) and Rk(w, z

?) are decreasing in w. To see this, assume

w increases but R does not decrease, z̃ weakly increases by definition and demand strictly decreases

for each entrepreneur. But then market conditions cannot be satisfied. Therefore, Ri(w, z
?) must

be strictly decreasing in w. Since z? < z̄, R`(0, z
?) > Rk(0, z

?). We need to show that for large

enough w, Rk(w, z
?) > R`(w, z

?).

Observe that as w diverges, R converges to 0, otherwise market clearing condition cannot

be satisfied. As R converges to 0, automation technology binds for everyone: I? → I. Using the

similar argument with proof of lemma 3:

G(z?) =

∞∫
z̃`

φ

[
M(R`, z)− w

]
dG(z) >

∞∫
z̃k

φ

[
M(Rk, z)− w

]
dG(z)→ 0,

where z̃i = max{z?, w1−IRI
i /C}. If R` ≥ Rk, M(R`, z

?) ≤ M(Rk, z
?) and z̃` ≥ z̃k. There-

fore, above inequality cannot hold. Hence Rk(w, z
?) > R`(w, z

?) for large enough w. Using the

intermediate value theorem, continuity of R` and Rk implies that there exist w? > 0 such that

R`(w
?, z?) = Rk(w

?, z?).

Using similar argument with the proof of lemma 4, one can easily show that R`(w, z
?) −

Rk(w, z
?) is decreasing around w?, hence R` and Rk can at most intersect once. Therefore, prices

are unique for a given z?. �
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Lemma 7. For z? > z̄, there does not exist positive prices that clears the market.

Proof. As we discussed in the previous lemma, Rk and R` can only intersect if R` > Rk

for low wage rates, since R` cross Rk from above. However, R`(0, z
?) < Rk(0, z

?) since , z? > z̄.

Therefore, they cannot intersect when w > 0. �

Up to now, we know that for any z ∈ (zmin, z̄], there exist unique prices w(z), R(z) that

clears the market. To find the equilibrium, we need z? to be indifferent between occupations,

i.e. π(z?|R(w?), w(w?)) = w(z?) where π(z|R(w), w(w)) is the profit of entrepreneur with skill z

when prices are {R,w}. Clearly, if there are inactive entrepreneurs, then it cannot be equilibrium.

Recall that an entrepreneur with skill level z′ is inactive if M(R(z), z′) < 0 = w(z). Let’s define

A := {z|M(R(z), z) > w(z), z ≤ z̄}, so that z ∈ A implies every entrepreneur is active when z is

cutoff entrepreneur.

Lemma 8. There exists z0 ∈ (zmin, z̄), such that for z < z0, there exist inactive entrepreneurs,

and for z > z̄, every entrepreneur is active.

Proof. Let z′ ∈ A. If M(R(z′), z′) − w(z′) is increasing around z′, then z′′ > z′ implies

z′′ ∈ A. To show M(R(z′), z′)− w(z′) is increasing take derivative with respect to z′:

dM/dz = MRRz +Mz − wz.

Since Mz is positive, it is sufficient to show that MRRz−wz is positive. Now consider labor market

clearing condition. By definition, z̃′ = z′. Then:

∞∫
z′

φ

[
M(R(z′), z)− w(z′)

]
dG(z) = G(z′).

Derivative with respect to z′ leads to:

∞∫
z′

φ′

[
M(R(z′), z)−w(z′)

]
(MR(R(z′), z)Rz − wz) dG(z) = g(z′)+φ

[
M(R(z′), z′)−w(z′)

]
> 0.
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Claim 1. ∂M(R,z)
∂R∂z

< 0.

Proof. Suppose I?(z) < I, then M(R, z) = RγI?. Then:

∂M(R, z)

∂R∂z
= γ′I?I

?
z +Rγ′′I?I

?
RI

?
z +RγI?I

?
Rz.

Recall that optimal I? solves the following equality:

1∫
I?

lnγi − (1− I?)lnγI? = ln(R/z).

Using implicit function theorem twice, one for derivative of R, and second for derivative of z, we

could get:

−γI?I?z = −I?zRγ′I?I?R + (1− I?)Rγ′′I?I?z I?R + (1− I?)Rγ′I?I?Rz.

By rearranging, one can get:

∂M(R, z)

∂R∂z
= I?zRγ

′
I?I

?
R − Iγ′I?I?z < 0

since I?z > 0, I?R < 0 and γI? > 0.

Now suppose technology binds, hence M(R, z) = (ZC/RI)1/(1−I). Since I does not change

with small changes in R and z, it is straight forward to show that MRz < 0. �

By claim 1, MR is decreasing in z, hence MR(R(z′), z′) > MR(R(z′), z) for z > z′. φ is

strictly increasing, hence derivative is positive. Thus

(MR(R(z′), z′)Rz − wz)
∞∫
z′

φ′

[
M(R(z′), z)− w(z′)

]
dG(z) > 0.

Therefore, it must be the case that MR(R(z′), z′)Rz−wz is positive, which implies that M(R(z′), z′)−

w(z′) is increasing. Define z0 := infA. M(R(z), z) − w(z) is increasing implies that A is con-
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nected, for z ∈ A ⇐⇒ z̄ ≥ z > z0, if such z0 exists.

Next, we show that z0 exists and is in (zmin, z̄).B y definition, M(R(z̄), z̄) > 0 = w(z̄),

hence z̄ ∈ A. Continuity of R,w,M implies that z0 < z̄.

To show z0 > zmin, suppose the contrary. Notice that as z → zmin, labor supply shrinks,

so demand converges to 0. Hence, it cannot be possible that both R(z) and w(z) converges to a

finite number, which leads to positive labor demand. Since Rk(0, z) < ∞ by lemma 2, it must be

the case that w(z) → ∞ and R(z) → 0 as z → zmin. Since, by assumption, every entrepreneur

is active, then z? > w1−IRI/C, hence w1−IRI/C is finite . However, this implies that the labor

demand, φ
[

(zC)1/(1−I)−(w1−IRI)1/(1−I)

RI/(1−I)

]
, diverges. Therefore, w1−IRI must diverge, which implies for

small z, there are inactive entrepreneurs. Hence z0 > zmin. �

Proposition 1. For a given automation technology 0 < I < 1, capital stock K̄, and skill distribu-

tion G with support [zmin, zmax] ⊂ R+, there exists a unique equilibrium.

Proof. By lemma 6 and 7, and due to the fact that every entrepreneur is active in

the equilibrium, we know that z? ∈ (z0, z̄). Define profit of cutoff entrepreneur as π̃(z) =

π(z|R(z), w(z)). z?, R(z?), w(z?) is equilibrium if π̃(z?) = w(z?). Optimality conditions imply

π̃(z) = v′ [M(R(z), z)− w(z)]φ [M(R(z), z)− w(z)] − v(φ [M(R(z), z)− w(z)]). Derivative with

respect to z gives us :

[M(R(z), z)− w(z)]φ′ [M(R(z), z)− w(z)] [MRRz +Mz − wz] > 0

where first term is positive since z ∈ A, second term is positive because φ is increasing and last

term is positive by lemma 8. Therefore, π̃ is strictly increasing in (z0, z̄), with π̃(z0) = 0 and

π̃(z̄) > 0.

On the other hand, w(z̄) = 0 by definition, and w(z0) > 0 by lemma 6. By the intermediate

value theorem and continuity of π̃(z) and w(z), they must intersect.

To show that it is unique, we want to show that w(z) is decreasing in z. Fix z′ and

9



w′ = w(z′). Take the derivative of the market clearing conditions with respect to z fixing w

constant, around R`(w
′, z′) and Rk(w

′, z′). Using similar idea to lemma 4, one can get:

′∫
z

φ′MR(R′`(w
′, z′)−Rk(w

′, z′)) > 0.

Since MR is negative, it must be the case that (R′` − R′k) < 0. By definition of derivative, this

implies that:

R`(w
′, z′ + ε)−Rk(w

′, z + ε)

ε
< 0

for small ε > 0. But then, R` and Rk cannot intersect at w >≥ w′, since R`(w, z)−Rk(w, z) must

be decreasing in w around market clearing wage rate. This implies that w(z) is strictly decreasing.

This concludes that w(z) and π̃ intersects only once, hence the equilibrium is unique. �

A.2 Proof of Proposition 3

Proposition 3. Suppose the distribution of entrepreneurial productivity, z, is Pareto with shape

parameter λ, the monitoring cost function is v(L) = Lα, and λ(1 − I)(α − 1) > 1.11 Then, the

distribution of profits has a Pareto tail with shape parameter λ(1− I)α−1
α

.12

Proof. The distribution of profit Π = π(z) is given by:

P (Π > π) = D

[
α

(
π

α− 1

)α−1
α

+ w

]λ(1−I)
RλI

Cλ
. (12)

11Proposition 1 can be extended to any unbounded distributions as long as the labor demand remains finite. For
the Pareto distribution, we need λ(1− I)(α− 1) > 1 to have an equilibrium.

12We say that the tail distribution of F is distributed by G if F (x)/G(x)→ 1 as x→∞. Observe that including
capital income, RK, does not impact the tail of income distribution of entrepreneurs.
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By dividing to D̃πλ(1−I)α−1
α , where D̃ = DRλI/C(I)λ

[
α/(α− 1)(α−1)/α

]λ(1−I)
, we can get:

P (Π > π)

D̃πλ(1−I)α−1
α

=

[
1 +

w(α− 1)
α−1
α

απ
α−1
α

]λ(1−I)

→ 1 as π →∞.

Hence Π ∼ Pareto(λ(1− I)α−1
α

).

�

B Endogenizing v: Efficiency Wage

In the previous section, we introduced a convex cost function for labor, v, as the source of the

diseconomies of scale, but did not provide why there is this additional cost and why it is convex.

In this section, we provide a micro foundation for v using the efficiency wage theory similar to

Shapiro & Stiglitz (1984).

Suppose that time is continuous and there is a measure one of the risk-neutral individuals

who discounts future with the rate r > 0. Each individual has two types of skills: labor and

entrepreneurial skill. Labor skill is the same for all individuals, whereas, entrepreneurial skill,

denoted by z, is distributed with some cumulative distribution function G. There is a fixed

amount of capital, K̄. To avoid the capital accumulation decision of individuals, we assume that

capital is owned by outsiders.

Individuals can either become a worker or an entrepreneur. An entrepreneur rents capital,

hires labor to produce output and enjoys a profit, π(z). A worker can be in one of two states at

any point in time: employed or unemployed.
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B.1 The Problem of the Worker

An employed worker earns a flow wage w until he is separated from the job. The separation can

happen in two ways: exogenous separation that happens with Poisson rate δ or getting caught

while shirking. A worker is monitored with a Poisson rate of q. Hence, a worker who shirks leaves

the job with Poisson rate δ+ q, and a worker who exerts effort leaves the job with Poisson rate δ.

Let U denotes the value of being unemployed, Ve(w, q) denotes the value of exerting effort

in a job that pays wage w and monitoring probability is q, and Vs(w, q) denotes the value function

for shirking on the job that pays wage w and monitoring probability is q. Then, Ve and Vs satisfy

the following equations:

rVs(w, q) =w + (δ + q) [U − Vs(w, q)] , (13a)

rVe(w, q) =w − c+ δ [U − Ve(w, q)] , (13b)

where c is the cost of exerting effort.

An employed worker exerts effort if and only if Ve(w, q) ≥ Vs(w, q). This implies that the

worker exerts effort if the wage rate satisfies:

w ≥ rU + c+
(r + δ)c

q
. (NSC)

This is the so-called no-shirking condition. This condition says that the wage rate should com-

pensate for the disutility of working, rU + c. Moreover, there is a premium to induce the worker

to work, (r + δ)c/q.

An unemployed worker enjoys a flow unemployment benefit b and finds a job with Poisson

rate µ. Let x = (w, q) be the characteristics of the jobs. Then, U satisfies the following equation:

rU = b+ µ

∫
X

[max{V (x)− U, 0}] dF (x), (14)
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where X is the set of active firms characteristics, F is the distribution of job openings and V (w, q) =

max{Ve(w, q), Vs(w, q)}.

B.2 The Problem of the Entrepreneur

Now consider an entrepreneur. The entrepreneur has a limited ability to monitor his employees.

Assume that as the measure of employees increases, the probability of being monitored for a single

worker decreases, i.e. q(L) is a decreasing function of L. 13 The entrepreneur wants his employees

to exert effort, otherwise, they produce nothing. Therefore, he needs to take into account the

moral hazard problem. An entrepreneur with L labor needs to pay his workers w(L) such that

Ve(w, q(L)) ≥ Vs(w, q(L)) so that workers exert effort. In other words, at the optimum w should

satisfy (NSC) with equality. Hence, define the optimal wage policy as:

w(L) = rU + c+
(r + δ)c

q(L)
.

In this setting, the wage premium to induce a worker to exert effort is a function of firm size:

larger firms need to pay a higher wage.

The problem of an entrepreneur in this setting is:

π(z) = max
I?,{`i}i∈[I?,1],
{ks}s∈[0,I?)

zY − w

 1∫
I?

`idi

 1∫
I?

`idi−R
I?∫

0

kidi (15)

s.t. 0 ≤ I? ≤ I,

`i ≥ 0, k ≥ 0,

13In this model monitoring is only done by the entrepreneur. The monitoring cost is only important if the
entrepreneur cannot identify the shirking worker from the non-shirking one. Alternatively, it might be possible to
use a contract that depends on the performance of peers. This way, the entrepreneur can incentivize his employees
to monitor each other (Che & Yoo, 2001). Replacing labor with capital would decrease peer monitoring, which
might lead to a change in the compensation scheme to induce workers to exert effort (Dogan & Yildirim, 2017).
However, in this paper, we only consider monitoring entrepreneurs.
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and the output is given by (3).

An individual would become an entrepreneur instead of a worker if π(z) ≥ rU . Since π(z)

is increasing in z, there exist a marginal entrepreneur z? such that any individual with z′ > z?

becomes an entrepreneur.

B.3 Equilibrium

Definition 2. For a given automation technology I, skill distribution G with support [zmin,∞)

and capital stock K̄, the steady state equilibrium of the economy consists of prices {R,w(.)}, value

functions {U, Ve(z), Vs(z), the marginal entrepreneur z?, labor and capital demand {`?(z), k?(z)}

for z ≥ z?, automation technology I?(z) for z ≥ z?, matching process µ, vacancy distribution F ,

and unemployment u such that:

• Value functions satisfy (14), (13a),(13b);

• π(z?) = rU ;

• `(z), k(z) and I?(z) solve the entrepreneur’s problem (15);

• inflow to unemployment should be equal to outflow from unemployment: δ(G(z?)− u) = µu;

• labor market clears:
∞∫
z?

(1− I?(z))`?(z)dG(z) = G(z?)− u;

• capital market clears:
∞∫
z?
I?(z)k?(z)dG(z) = K̄;

• wage function: w(L) = rU + c+ (δ+r)c
q(L)

;

• vacancy posting: F (w) =

w∫
w
¯

g(z(w′))L(z(w′))

∞∫
w
¯

g(z(w′))L(z(w′))
dw′ for w ≥ w

¯
= w(L(z?)),

where z(w) = L−1
(
q−1

(
w−c−rU
(r+δ)c

))
, i.e. entrepreneurial skill level that offers wage rate w, L−1 is

the inverse function of labor demand and q−1 is the inverse of monitoring probability.
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B.4 Characterization of the Income Distribution

We can separate the wage function in two components, fixed and variable part. Define w0 = rU+c

and wv(L) = (r+δ)c
q(L)

so that w(L) = w0 + wv(L). The labor cost in this setting can be mapped

to the labor cost in previous setting by defining v(L) = wv(L)L. Hence, if L/q(L) is convex, the

entrepreneur’s problem would be the same in both settings.

Even though nothing has changed on the entrepreneur’s side, the labor supply side has

changed. First, to discipline the workers, there must be unemployment. Without unemployment,

workers can immediately find a new job after being fired, then there is no cost of being fired.

Therefore, unemployment is needed to discourage workers from shirking. Second, there is wage

dispersion. In the previous section, we assumed v as a waste; in contrast, here we assume that

it is paid to the workers as compensation. Since monitoring in larger firms is harder, an en-

trepreneur with a larger labor force needs to pay more to provide workers an incentive to exert

effort. Therefore, the firm size distribution would lead to wage dispersion.

To characterize distributions, we need more structure. Recall that q(L) is the probability

that a worker is being monitored. One intuitive way to define q is to think that the entrepreneur

randomly selects workers and monitors them. Let M denote the measure of workers that an

entrepreneur can monitor in a given time. Then, the Poisson rate that a worker in a firm with L

employees is monitored is q(L) = M/L. This leads to v(L) = ML2, in other words letting α = 2

in the previous setting would give the same entrepreneur’s problem. Therefore, similar results

follow in this setting:

Corollary 1. If z follows a Pareto distribution with parameter λ, then for large enough π, profit

distribution can be approximated by Pareto distribution with parameter λ(1− I)/2.

As we discussed, there is going to be wage dispersion even for workers. Since there is

a one-to-one relation between wage level and firm size, wage distribution mimics the firm size

distribution:
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Corollary 2. If z follows a Pareto distribution with parameter λ, then for large enough w, wage

distribution can be approximated by Pareto distribution with parameter λ(1− I).

Observe that only the curvature of q(L) is important for profit distribution. In this for-

mulation, the efficiency of monitoring, M , does not have an impact on the tail parameter. If an

entrepreneur can monitor a higher measure in a given time, this would not change the convexity

of the profit function. Therefore, if we think M as the monitoring technology or communication

technology as in Garicano (2000), then it has no impact on top income inequality. On the other

hand, automation technology I still has the same impact on the right tail of the income distri-

bution. Furthermore, now it not only impacts profit distribution but also leads to thicker wage

distribution.
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